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Abstract 

In previous papers we showed that certain aesthetic ideas led to a bounded particle. In 
this paper, we show that a theory based on FJ,;, = 0, gls;k = 0 with g = 0 can also lead to a 
bounded particle. This theory has the advantage that all tensors constructed from 
g,s, Fjk, 0i are treated in a uniform way. Also, we have sixty-four distinct Fjk appearing. 
This was not the case in our previous work. 

1. Theory 

After  m a n y  unsuccessful  a t tempts ,  we found  in previous  papers  
(Murask in ,  1973; Murask in  & Ring,  1973) a bounde d  par t ic le  wi th in  
aesthetic  field theory.  In  o rder  to  achieve this, we assumed tha t  g = 0. 
Because g = 0, we cannot  raise indices wi th  g~s. Thus,  we work  in a fo rmal -  
ism in which a l l indices  are subscripts.  In  Murask in  (1972) our  field equat ions  
were 

OA~sk 
aX t -- Amjk Amiz + A~,,k Amsl + AismAmkt (1.1) 

In  Murask in  & Ring (1972) our  field equat ions  were 

ae~i 
Oxk = A ~o~ea~e~k (1.2) 

But such field equat ions  do no t  lead to al l  tensors  being t rea ted  in a un i fo rm 
way,  so far  as their  change is concerned.  This  could  be viewed as a d i s turb ing  
fea ture  f rom the po in t  o f  view o f  aesthetics.  Thus,  a p rob l e m is whether  we 
can fo rmula te  a g = 0 theory  which t reats  tensors,  and  higher  derivatives,  
in a un i fo rm fashion.  

There  was also ano ther  more  technical  p rob l e m tha t  we encountered.  W e  
found  tha t  after  an e,~ t r ans fo rmat ion  at  the origin,  we d id  not  get s ixty-four 
different A~sk. 
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In this paper, we shall discuss a g = 0 theory in which tensor functions of  
gt~, F~.k and 0i are treated in a uniform way and in which sixty-four F~k are 
distinct. 

The key point in our argument is this. Since g = 0, we cannot use gij to 
raise and lower indices. However, by introducing a set of  basis vector vari- 
ables, we can define contravariant indices using the reciprocal (dual) basis 
vector field. In order for this to be possible, it is necessary to alter the 
boundary conditions suggested in our previous papers. There we required 
the basis vector fields to go to zero at infinity. But this would imply that we 
cannot have a reciprocal basis vector field that is finite everywhere. Thus, 
instead, we shall postulate a set of  basis vectors e~i which obey e~i ~ 6~. at 
infinity. Then, we can introduce the reciprocal field e J  satisfying 

e% e j  = 6~ (1.3) 
e~i ear= fi~ 

at all points. Next, we require that the change of  e~i be given by (/~ak is 
assumed present so that Rijkz # 0 may be considered) 

de~i = F~k e~s dx ~ - r~ak eai dx k (1.4) 

Then from (1.3) we get 

d e j  = - F ~  e~' dx k + Fa~k e j  dx k (1.5) 

We require that F~k determine the change of subscripted i, jindices according 
to the first term of  (1.4) and superscripted i, j indices according to the first 
term of  (1.5). This gives, for the change of  F~k, 

�9 " - F~a  F ~ ,  ( 1 . 6 )  

This is the same equation introduced in our earliest work (Muraskin, 1970). 
This equation has the property that al l tensor products of  g,j, Fjk and 3~ 
are treated in a uniform way so far as their change is concerned, gij is 
introduced by means of  

gij = e~ eaj g,a(x) (1.7) 
at the origin 

1 o (1.8) 
g~a= 0 1 

0 0 

Thus, we have g = 0. The change ofg~j is again the same as in our earlier 
work (Muraskin, 1970) 

3giJ t 3x k = Fik gtj + Ftjkgi~. (1.9) 

We cannot introduce g~J satisfying giJgsk = 5~, any more, nor is there a g,a 
satisfying g 'ag~ = 3~. We shall not introduce any g'a into the theory. 
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Since we have not introduced gU, we do not have such objects as gUF~,,F~.,. 
Thus, the restrictions that these objects must be zero in order to satisfy the 
boundary conditions F}k-+ 0 at infinity does not appear in the present 
theory. 

We may ask if our g = 0 theory can satisfy the following: 

(1) Integrability. 

(2) ~ Fjk ---> 0 and gij -+ 0 at infinity. 

(3) A particle appearing at an arbitrary origin. 

We have worked with the following data. The F ~  chosen to be nonzero are 

o _  
= F z o  - F 3 o  = F o o  - F o l  = = 

t o 1  o _ o = / " 2 2  - -  Faa = --B (1.10) 
r~3 s _  1 F21 __ Fa 2 __/"213 a _ _  2 _ _  . . . .  F12 - - F a l  - C 

This data obeys R*jkt ~ 0 in general, but still satisfies the integrability 
equations. When A = B = C, we get R~ik~ = O. 

For our purposes, we have considered the following choice of par- 
ameters as representative of  R*3u r 0 theory 

At the origin we have 

with e~, chosen to be 

A = I ,  B = I ,  C = 0 . 7  (1.11) 

Yjk = ea, ~ eaJ e~k r ~ ,  (1.12) 

ell = 0.7 e l 2  = 0"62 e~a = 0-46 e~o = 2.4 
e21 - -0"12 e22 = -0.08 e2a = -0-14 e2o = 0.082 (1.13) 
eal = -0 .015  e32 = -0 .097  e3a =-0 .0111 e3o = 0-092 

e~ 

e~ e~ e~ were then calculated according to the procedures in Muraskin 
(1971) using g,B = (1, 1, 1, 0). With this set of data we get a maximum in goo. 

Equation (1.12) implies that F ~  must be a function of  x in order that 
F~.~ -+ 0 when e~ -+ 5~ at infinity. 

We have found that our computer results seem to suggest g u - +  0 at 
infinity. This means that g~  should be a function of x, just as F ~  is. 

We have not yet found a/~Bk set of data at the origin to confirm that 
e~, -+ 5~ at infinity. We shall suppose, without proof, that such a set does 
exist. 

The data (1.10) which appears at an arbitrary origin point is unchanged by 
any three-dimensional spatial rotation, t 

We now get that all sixty-four F}k are different, and thus the problem of  
repeats which was present in o u r  Ai j  k and e~, work is gone. 

t This fact has also been confirmed for various angles using the computer. 
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2. Computer Results 

We have obtained the following: 

(a) As a result o f  running down the coordinate axes, goo was found to be 
bounded  by zero in all cases, goo was also found to be bounded  by  
zero in all other selected directions that  we tried. 

(b) In  addit ion to the maximum in goo at the origin, we have found a 
min imum nearby. 

(c) Along the coordinate axes we have found that  all components  o f  the 
field tend to zero after we have gone far f rom the origin. 

(d) goo as a function o f  x, y, z can be characterized as follows. Along 
+x,  +y,  +z, goo monotonical ly  approaches zero. Along - x ,  - y ,  - z ,  
goo decreases, then increases, and then decreases again tending 
towards zero. 

These results are similar to what  we have obtained in previous papers 
using somewhat  different field equations, but  with data  at the origin that  is 
basically o f  the same character as the data used here. t  

If, in (1.11), we choose A = B = C = 1, we get an example o f  R*j.kl = 0 
theory. We can get the same results for  F~.k and g~j at each point  by using 
instead o f  (1.6) and (1.9), the equations 

with 

0e~* = F~r eat e~k (2.1) 
ax k 

I "~ - -  e i e~ j e~ ' k lW~y  
i k -  �9 (2.2) 

gij = e~, eaj g=a 

i with F~r and g~B constant.  Integrability o f  e~ leads to R jkt = 0. F r o m  (2.1) 
and (2.2), we get (1.6) and (1.9). We have confirmed that  (2.1) and (2.2) lead 
to the same answers for F~-k and g,j as (1.6) and (1.9) to computer  accuracy.:~ 
However,  using (2.1) we find e~ --> 0 far down the axis, and thus we do no t  
get e~ -+ 5~.. Thus, we can no longer introduce contravariant  indices at all 
points using these basis vectors. We nevertheless made some computer  runs 
in the R*j~l = 0 theory. Our  results are the same as (a), (b), (c), (d) given 
previously. In  fact, we may go one step beyond this. We have found, f rom 
all the computer  runs we have made, that  the values o fg t j  are not  sensitive 

t In all cases the data was unchanged by three-dimensional spatial rotations or was 
form-invariant under four-dimensional rotations. However, the data in this latter ease 
[see equation (5.4) of the preceding paper, p. 90] can be obtained from a four-dimensional 
orthogonal transformation on data that is unchanged by three-dimensional spatial rota- 
tions. Thus, in either situation our data is consistent with an underlying structure that is 
invariant under three-dimensional spatial rotations. 

Although we get the same answers when g,a, F~ are constant we have not argued that 
we cannot get the same answers when g~p, F~ are not constant. 
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to the choice o f  C in (1.11) provided we use the same e'~ as in (1.13).t Thus,  
we get the same values o f g u  at each point  for the R ~ z  = 0 and R t m r  0 data  
even though  F~.k are different for  the two cases. I f  C = 1, we have formally 
the same data  as in our  e,~ work  based on equation (1.2) as well. We have 
also confirmed that  we get the same values o f g  u at all points there (that we 
considered), as compared  with the present case. 

3. Conclusions 

In  this paper,  we have shown that  a theory based on F~.kt = 0, gu';~ = 0 
and g = 0 can lead to a bounded  particle (as inferred f rom axes runs and 
selected runs of f the  axes). The bounded  particle appears similar to the kind 
o f  particle we have been getting previously when we used different equations. 
Our  present theory has the advantage that  all tensors constructed f rom 
Fjk, gu, at are treated in a uni form way so far as their change is concerned. 
Also, we have sixty-four distinct Fjk appearing. 
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t.Analytica]]y, we have shown from the field equations that \Oxk J and \~--~-~x~1 

and e%, e%, e% are independent of C. In order to comp]ete the proof that gu is indepen- 
dent of C at all points we would have to show that all derivatives of gu are independent 
of C. 


